If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x^2=35^2
We move all terms to the left:
3x^2+4x^2-(35^2)=0
We add all the numbers together, and all the variables
7x^2-1225=0
a = 7; b = 0; c = -1225;
Δ = b2-4ac
Δ = 02-4·7·(-1225)
Δ = 34300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{34300}=\sqrt{4900*7}=\sqrt{4900}*\sqrt{7}=70\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-70\sqrt{7}}{2*7}=\frac{0-70\sqrt{7}}{14} =-\frac{70\sqrt{7}}{14} =-5\sqrt{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+70\sqrt{7}}{2*7}=\frac{0+70\sqrt{7}}{14} =\frac{70\sqrt{7}}{14} =5\sqrt{7} $
| 3/2x-3=2/x+2 | | -14=-7/6w | | y=500(1.08)^16 | | -6x-20=40-30x | | -2x-3/4=-6-5x/6 | | 64c^2-1=0 | | 0.4^(x-3)=0.5^(2x) | | -24x-36=-72-60x | | 3z^2+z=3 | | 4y=4(6-5) | | -60x-20=40-30x | | (-60x-20)=(40-30x) | | 0.04(y-8)+0.12y=0.14y-0.3 | | x-2/4=3x-7/10 | | 5x-10=6x-14 | | 3z^2+z+12=9 | | 8b+20=18b+6 | | 0.2x-0.8-23=1 | | 12x-9+3x-5=11x-4+3 | | x^2=0.15386-180x | | 1/4x-28=1+3x | | (x)(x)=0.15386-180x | | -3/5x+1/2=17 | | -3/5(z)+1/2=17 | | -3/5*z+1/2=17 | | -3/5z+1/2=17 | | 9/4(-4)+14=x | | 11.5=0.75x+3 | | 10-10*10+10=x | | 11x+16=12x-7 | | 2(x-3)-5x=7 | | 8.13+5.85y=20.05y-8.91 |